Exact methods for the Oven Scheduling Problem

نویسندگان

چکیده

Abstract The Oven Scheduling Problem (OSP) is a new parallel batch scheduling problem that arises in the area of electronic component manufacturing. Jobs need to be scheduled one several ovens and may processed simultaneously if they have compatible requirements. jobs must respect constraints concerning eligibility availability ovens, release dates jobs, setup times between batches as well oven capacities. Running highly energy-intensive thus main objective, besides finishing on time, minimize cumulative processing time across all ovens. This objective distinguishes OSP from other problems which typically objectives related makespan, tardiness or lateness. We propose solve this NP-hard using exact techniques present two different modelling approaches, based positions another representative for batches. These models are formulated constraint programming (CP) integer linear (ILP) implemented both solver-independent modeling language MiniZinc interval variables CP Optimizer. An extensive experimental evaluation our solution methods performed diverse set instances. evaluate performance state-of-the-art solvers three variants function reflect real-life scenarios. show can find feasible solutions instances realistic size, many those being provably optimal nearly solutions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exact Algorithm for the Mode Identity Project Scheduling Problem

In this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (MRCPSP) with mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be processed in the same mode. We present a depth-first branch and bound algorithm for the resource constrained project schedulin...

متن کامل

an exact algorithm for the mode identity project scheduling problem

in this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (mrcpsp) with mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be processed in the same mode. we present a depth-first branch and bound algorithm for the resource constrained project schedulin...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Exact methods for the resource levelling problem

Project management in the present time is characterized by rapid advancements in many technologies, hardly calculable risks and very tight deadlines for nearly all kinds of projects. Planning and steering of projects under these conditions turns out to be a really tough job even for the most experienced project managers. To deal responsibly with project sponsors or customers, they must consider...

متن کامل

An exact algorithm for the mixed-model level scheduling problem

The Monden Problem, also known as the Output Rate Variation Problem (ORV), is one of the original formulations for mixed-model assembly line level scheduling problems in a just-in-time (JIT) system. In this paper, we develop a new branch-and-bound procedure as an efficient solution of this problem that uses several new and previously proposed lower and upper bounds. The algorithm also includes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constraints - An International Journal

سال: 2023

ISSN: ['1383-7133', '1572-9354']

DOI: https://doi.org/10.1007/s10601-023-09347-2